High order asymptotic preserving DG-IMEX schemes for discrete-velocity kinetic equations in a diffusive scaling

نویسندگان

  • Juhi Jang
  • Fengyan Li
  • Jing-Mei Qiu
  • Tao Xiong
چکیده

In this paper, we develop a family of high order asymptotic preserving schemes for some discrete-velocity kinetic equations under a diffusive scaling, that in the asymptotic limit lead to macroscopic models such as the heat equation, the porous media equation, the advectiondiffusion equation, and the viscous Burgers’ equation. Our approach is based on the micromacro reformulation of the kinetic equation which involves a natural decomposition of the equation to the equilibrium and non-equilibrium parts. To achieve high order accuracy and uniform stability as well as to capture the correct asymptotic limit, two new ingredients are employed in the proposed methods: discontinuous Galerkin (DG) spatial discretization of arbitrary order of accuracy with suitable numerical fluxes; high order globally stiffly accurate implicit-explicit (IMEX) Runge-Kutta scheme in time equipped with a properly chosen implicit-explicit strategy. Formal asymptotic analysis shows that the proposed scheme in the limit of ε → 0 is a consistent high order discretization for the limiting equation. Numerical results are presented to demonstrate the stability and high order accuracy of the proposed schemes together with their performance in the limit. Our methods are also tested for the continuous-velocity one-group transport equation in slab geometry and for several examples with spatially varying parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Asymptotic Preserving DG-IMEX Schemes for Linear Kinetic Transport Equations in a Diffusive Scaling

In this paper, some theoretical aspects will be addressed for the asymptotic preserving DG-IMEX schemes recently proposed in [10] for kinetic transport equations under a diffusive scaling. We will focus on the methods that are based on discontinuous Galerkin (DG) spatial discretizations with the P k polynomial space and a first order IMEX temporal discretization, and apply them to two linear mo...

متن کامل

High order asymptotic preserving nodal discontinuous Galerkin IMEX schemes for the BGK equation

Abstract In this paper, we develop high-order asymptotic preserving (AP) schemes for the BGK equation in a hyperbolic scaling, which leads to the macroscopic models such as the Euler and compressible Navier-Stokes equations in the asymptotic limit. Our approaches are based on the so-called micro-macro formulation of the kinetic equation which involves a natural decomposition of the problem to t...

متن کامل

A hierarchical uniformly high order DG-IMEX scheme for the 1D BGK equation

A class of high order nodal discontinuous Galerkin implicit-explicit (DG-IMEX) schemes with asymptotic preserving (AP) property has been developed for the one-dimensional (1D) BGK equation in Xiong et. al. (2015) [40], based on a micro-macro reformulation. The schemes are globally stiffly accurate and asymptotically consistent, and as the Knudsen number becomes small or goes to zero, they recov...

متن کامل

Asymptotic Preserving Time–Discretization of Optimal Control Problems for the Goldstein–Taylor Model

We consider the development of implicit-explicit time integration schemes for optimal control problems governed by the Goldstein–Taylor model. In the diffusive scaling this model is a hyperbolic approximation to the heat equation. We investigate the relation of time integration schemes and the formal Chapman-Enskog type limiting procedure. For the class of stiffly accurate implicit–explicit Run...

متن کامل

Discretization of the Multiscale SemiconductorBoltzmann Equation by DiffusiveRelaxation Schemes

In this paper we derive diffusive relaxation schemes for the linear semiconductor Boltzmann equation that work in both the kinetic and diffusive regimes. Similar to our earlier approach for multiscale transport equations, we use the evenand oddparity formulation of the kinetic equation, and then reformulate it into the diffusive relaxation system (DRS). In order to handle the implicit anisotrop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 281  شماره 

صفحات  -

تاریخ انتشار 2015